∫xndx=xn+1n+1+C,n≠−1
|
∫cosxdx=sinx+C
|
∫sinxdx=−cosx+C
|
∫sec2xdx=tanx+C
|
∫cosec2xdx=−cotx+C
|
∫secxtanxdx=secx+C
|
∫cosecxcotxdx=−cosecx+C
|
∫dx1−x2√=sin−1x+C
|
∫dx1−x2√=−cos−1x+C
|
∫dx1+x2=tan−1x+C
|
∫dx1+x2=−cot−1x+C
|
∫exdx=ex+C
|
∫axdx=axloga+C
|
∫dxxx2−1√=sec−1x+C
|
∫dxxx2−1√=−cosec−1x+C
|
∫dxxx2−1√=−cosec−1x+C
|
| ∫1xdx=log|x|+C |
Integration by Substitution Formulas
- 1. ∫tanxdx=log|secx|+C
- 2. ∫cotxdx=log|sinx|+C
- 3. ∫secxdx=log|secx+tanx|+C
- 4. ∫cosecxdx=log|cosecx−cotx|+C
Integrals (Special Functions) Formulas
- i) ∫dxx2−a2=12alog∣∣x−ax+a∣∣+C
- ii) ∫dxa2−x2=12alog∣∣a+xa−x∣∣+C
- iii) ∫dxx2+a2=1atan−1xa+C
- iv) ∫dxx2−a2√=log∣∣x+x2−a2−−−−−−√∣∣+C
- v) ∫dxx2+a2√=log∣∣x+x2+a2−−−−−−√∣∣+C
- vi) ∫dxx2−a2√=sin−1xa+C
Integration by Parts Formulas
- ∫f1(x).f2(x)=f1(x)∫f2(x)dx−∫[ddxf1(x).∫f2(x)dx]dx
- ∫ex[f(x)+f′(x)]dx=∫exf(x)dx+C
Special Integrals Formulas
a) ∫x2−a2−−−−−−√dx=x2x2−a2−−−−−−√−a22log∣∣x+x2−a2−−−−−−√∣∣+C- b) ∫x2+a2−−−−−−√dx=x2x2+a2−−−−−−√+a22log∣∣x+x2+a2−−−−−−√∣∣+C
- c) ∫a2−x2−−−−−−√dx=x2a2−x2−−−−−−√+a2sin−1xa+C
- d) ax2+bx+c=a[x2+bax+ca]=a[(x+b2a)2+(ca−b24a2)]
0 comments:
Post a Comment